Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.564
Filtrar
1.
Heliyon ; 10(7): e28218, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560106

RESUMO

Host-virus interactions can significantly impact the viral life cycle and pathogenesis; however, our understanding of the specific host factors involved in highly pathogenic avian influenza A virus H7N9 (HPAI H7N9) infection is currently restricted. Herein, we designed and synthesized 65 small interfering RNAs targeting host genes potentially associated with various aspects of RNA virus life cycles. Afterward, HPAI H7N9 viruses were isolated and RNA interference was used to screen for host factors likely to be involved in the life cycle of HPAI H7N9. Moreover, the research entailed assessing the associations between host proteins and HPAI H7N9 proteins. Twelve key host proteins were identified: Annexin A (ANXA)2, ANXA5, adaptor related protein complex 2 subunit sigma 1 (AP2S1), adaptor related protein complex 3 subunit sigma 1 (AP3S1), ATP synthase F1 subunit alpha (ATP5A1), COPI coat complex subunit alpha (COP)A, COPG1, heat shock protein family A (Hsp70) member 1A (HSPA)1A, HSPA8, heat shock protein 90 alpha family class A member 1 (HSP90AA1), RAB11B, and RAB18. Co-immunoprecipitation revealed intricate interactions between viral proteins (hemagglutinin, matrix 1 protein, neuraminidase, nucleoprotein, polymerase basic 1, and polymerase basic 2) and these host proteins, presumably playing a crucial role in modulating the life cycle of HPAI H7N9. Notably, ANXA5, AP2S1, AP3S1, ATP5A1, HSP90A1, and RAB18, were identified as novel interactors with HPAI H7N9 proteins rather than other influenza A viruses (IAVs). These findings underscore the significance of host-viral protein interactions in shaping the dynamics of HPAI H7N9 infection, while highlighting subtle variations compared with other IAVs. Deeper understanding of these interactions holds promise to advance disease treatment and prevention strategies.

2.
Games Health J ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563785

RESUMO

Purpose: To investigate the effectiveness of virtual reality (VR)-based interventions for functional rehabilitation of the upper limb in breast cancer patients through a systematic review and meta-analysis. Methods: The PubMed, Cochrane, Web of Science, CINAHL, Scopus, CNKI, Wanfang, and VIP databases were systematically searched for relevant literature published from the establishment of the database to June 2023. Differences in the effectiveness of VR-based interventions and other intervention therapies were compared using random effects model meta-analysis and standard deviation (SMD). Results: Seven eligible articles were identified and included in the meta-analysis. The combined analysis found that VR-based interventions had a positive impact on patients' upper limb mobility in terms of flexion (SMD = 1.33, 95% confidence interval; CI [0.48-2.19], P = 0.002), abduction (SMD = 1.22, 95% CI [0.58-1.86], P = 0.0002), and external rotation (SMD = 0.94, 95% CI [0.48-1.40], P < 0.0001). In addition, VR-based interventions could significantly improve the postoperative pain of patients with breast cancer. However, in grip strength (SMD = 0.43, 95% CI [-3.05 to 3.92], P = 0.81), shoulder muscle strength in flexion strength (SMD = 0.05, 95% CI [-2.07 to 2.18], P = 0.96), abduction strength (SMD = -0.10, 95% CI [-1.32 to 1.12], P = 0.88), external rotation strength (SMD = 0.46, 95% CI [-1.96 to 2.88], P = 0.71), and lymphedema, VR was as effective as other intervention treatments. A subgroup analysis showed that patients younger than 55 years had more benefit with VR-based rehabilitation than with other interventions and showed improvements with the intervention within 2 weeks. The intervention effect of using auxiliary equipment such as robotic arms is better than VR exercise based solely on games. Conclusion: The results of meta-analysis show that the intervention measures based on VR have positive effects on the improvement of upper limb mobility and pain relief in breast cancer patients. However, considering the low quality of evidence and small sample size, more clinical studies should be conducted to improve the credibility of the results.

3.
Cell Stem Cell ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593797

RESUMO

Many patient-derived tumor models have emerged recently. However, their potential to guide personalized drug selection remains unclear. Here, we report patient-derived tumor-like cell clusters (PTCs) for non-small cell lung cancer (NSCLC), capable of conducting 100-5,000 drug tests within 10 days. We have established 283 PTC models with an 81% success rate. PTCs contain primary tumor epithelium self-assembled with endogenous stromal and immune cells and show a high degree of similarity to the original tumors in phenotypic and genotypic features. Utilizing standardized culture and drug-response assessment protocols, PTC drug-testing assays reveal 89% overall consistency in prospectively predicting clinical outcomes, with 98.1% accuracy distinguishing complete/partial response from progressive disease. Notably, PTCs enable accurate prediction of clinical outcomes for patients undergoing anti-PD1 therapy by combining cell viability and IFN-γ value assessments. These findings suggest that PTCs could serve as a valuable preclinical model for personalized medicine and basic research in NSCLC.

4.
Plants (Basel) ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611510

RESUMO

N6-methyladenosine (m6A) is a prevalent internal modification in eukaryotic mRNA, tRNA, miRNA, and long non-coding RNA. It is also known for its role in plant responses to biotic and abiotic stresses. However, a comprehensive m6A transcriptome-wide map for Puccinia striiformis f. sp. tritici (Pst) infections in wheat (Triticum aestivum) is currently unavailable. Our study is the first to profile m6A modifications in wheat infected with a virulent Pst race. Analysis of RNA-seq and MeRIP-seq data revealed that the majority of differentially expressed genes are up-regulated and hyper-methylated. Some of these genes are enriched in the plant-pathogen interaction pathway. Notably, genes related to photosynthesis showed significant down-regulation and hypo-methylation, suggesting a potential mechanism facilitating successful Pst invasion by impairing photosynthetic function. The crucial genes, epitomizing the core molecular constituents that fortify plants against pathogenic assaults, were detected with varying expression and methylation levels, together with a newly identified methylation motif. Additionally, m6A regulator genes were also influenced by m6A modification, and their expression patterns varied at different time points of post-inoculation, with lower expression at early stages of infection. This study provides insights into the role of m6A modification regulation in wheat's response to Pst infection, establishing a foundation for understanding the potential function of m6A RNA methylation in plant resistance or susceptibility to pathogens.

5.
Cardiovasc Diabetol ; 23(1): 129, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622592

RESUMO

The long-term high-fat diet (HFD) can cause myocardial lipotoxicity, which is characterized pathologically by myocardial hypertrophy, fibrosis, and remodeling and clinically by cardiac dysfunction and heart failure in patients with obesity and diabetes. Circular RNAs (circRNAs), a novel class of noncoding RNA characterized by a ring formation through covalent bonds, play a critical role in various cardiovascular diseases. However, few studies have been conducted to investigate the role and mechanism of circRNA in myocardial lipotoxicity. Here, we found that circ_005077, formed by exon 2-4 of Crmp1, was significantly upregulated in the myocardium of an HFD-fed rat. Furthermore, we identified circ_005077 as a novel ferroptosis-related regulator that plays a role in palmitic acid (PA) and HFD-induced myocardial lipotoxicity in vitro and in vivo. Mechanically, circ_005077 interacted with Cyclophilin A (CyPA) and inhibited its degradation via the ubiquitination proteasome system (UBS), thus promoting the interaction between CyPA and p47phox to enhance the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase responsible for ROS generation, subsequently inducing ferroptosis. Therefore, our results provide new insights into the mechanisms of myocardial lipotoxicity, potentially leading to the identification of a novel therapeutic target for the treatment of myocardial lipotoxicity in the future.


Assuntos
Ciclofilina A , Dieta Hiperlipídica , Ferroptose , Animais , Ratos , Ciclofilina A/metabolismo , Miocárdio/metabolismo , Obesidade/metabolismo
6.
Eur J Pharm Sci ; 196: 106763, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599505

RESUMO

HKS21542, a highly selective activator of peripheral kappa opioid receptor agonists, plays a critical role in antinociception and itch inhibition during clinical development. Due to its indication population and elimination characteristics, it is imperative to evaluate the potential HSK21542 systemic exposure in individuals with renal impairment, hepatic impairment, the elderly, and the geriatric population. Here, a physiologically-based pharmacokinetic (PBPK) model for HSK21542 was developed based on in vitro metabolism and transport characteristics and in vivo elimination mechanism. Meanwhile, the potential systemic exposure of HSK21542 in specific populations was evaluated. The predicted results indicated increased systemic exposure in patients with renal impairment, hepatic impairment and in the elderly. Compared to the healthy volunteers aged 20-60 years, the AUC0-24h increased by 52 %-71 % in population with moderate to severe renal impairment, by 46 %-77 % in those with mild to severe hepatic impairment, and by 45 %-85 % in the elderly population aged 65-95-years. Conversely, the pediatric population demonstrated a potential decrease in systemic exposure, ranging from 20 % to 37 % in patients aged 0-17 years due to the physiological characteristics. Combined with the predicted results and the exposure-response relationship observed for HSK21542 and its analog (CR845), dosage regimens were designed for the target population with renal and hepatic impairment, supporting the successfully conducted trials (CTR20201702 and CTR20211940). Moreover, the observed exposure of HSK21542 in the elderly closely matched the predicted results within the same age group. Additionally, based on the predicted results, potential reductions in systemic exposure in pediatric patients should be carefully considered to avoid potential treatment failure in future clinical trials.

7.
J Mater Chem B ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647018

RESUMO

Ultrasmall iron oxide nanoparticles (USIO NPs) are expected to become the next generation T1 contrast agents; however, their diagnostic and therapeutic potential for primary brain tumors (such as glioblastoma multiforme, GBM) is yet to be explored. At present, the main challenge is the effective hindering of biological barriers, including the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB). Herein, we aimed to investigate whether the USIO NPs, in combination with MR-guided focused ultrasound (MRgFUS), could intensify MR imaging of GBM. In this study, we presented zwitterionic USIO NPs for enhanced MR imaging of both xenografted and orthotopic GBM mouse models. We first synthesized citric-stabilized USIO NPs with a size of 3.19 ± 0.76 nm, modified with ethylenediamine, and decorated with 1,3-propanesultone (1,3-PS) to form USIO NPs-1,3-PS. The obtained USIO NPs-1,3-PS exhibited good cytocompatibility and cellular uptake efficiency. MRgFUS, in combination with microbubbles, provided a non-invasive and safe technique for BBB opening, which, in turn, promoted the delivery of USIO NPs-1,3-PS in orthotopic GBM. This developed USIO NP nanoplatform may improve the precision imaging of solid tumors and therapeutic efficacy in the central nervous system.

8.
Acta Psychol (Amst) ; 246: 104251, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626598

RESUMO

In middle childhood, children's sense of fairness further develops, they are willing to pay a cost to maintain equality. Win-win and lose-lose are two forms of equality. Win-win equality refers to both parties maximizing benefits, while lose-lose equality means both parties incurring the maximum loss. Win-win equality allows third party upholding fairness to gain more reputational benefits without the violator being punished, embodying the principle of "benefiting oneself without harming others". On the other hand, lose-lose equality is a more deterrent form of fairness with the violator getting punished, and the third-party might experience a situation of "effort without appreciation." However, the specific form of equality which school-aged children prefer still requires further exploration. Therefore, adopting the dictator game paradigm of third-party punishment, we design two experiments to investigate the fairness preference of first to fourth-grade children when acting as a third party and to clarify patterns of age-related changes. Study 1 (N = 111) explored children's preferred form of fairness under advantageous inequity conditions. Study 2 (N = 122) further examined children's fairness preferences in disadvantageous inequity situations. The findings suggest that when confronted with inequitable distributions, whether rooted in disadvantageous or advantageous inequity, children display a notable tendency to utilize third-party punishment to achieve an equal allocation. Meanwhile, this tendency strengthens as they progress in grade levels. Notably, children consistently manifest a preference for win-win equality, highlighting their inclination towards mutually beneficial outcomes.

9.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1050-1064, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658148

RESUMO

Heterotrimeric GTP-binding protein (G-proteins) complex, which consists of Gα, Gß and Gγ subunits, plays critical roles in defense signaling. Arabidopsis genome contains only a single Gß-encoding gene, AGB1. Loss function of AGB1 in Arabidopsis results in enhanced susceptibility to a wide range of pathogens. However, the function of soybean AGB1 in immunity has not been previously interrogated. Bioinformatic analysis indicated that there are four GmAGB1 homologous genes in soybean genome, sharing homology of 86%-97%. To overcome the functional redundancy of these GmAGB1 homologs, virus-induced gene silencing (VIGS) mediated by the bean pod mottle virus (BPMV) was used to silence these four genes simultaneously. As expected, these four GmAGB1 homologous genes were indeed silenced by a single BPMV-VIGS vector carrying a conserved fragments among these four genes. A dwarfed phenotype was observed in GmAGB1s-silenced soybean plants, suggesting that GmAGB1s play a crucial role in growth and development. Disease resistance analysis indicated that silencing GmAGB1s significantly compromised the resistance of soybean plants against Xanthomonas campestris pv. glycinea (Xag). This reduced resistance was correlated with the decreased accumulation of pathogen-induced reactive oxygen species (ROS) and the reduced activation of GmMPK3 in response to flg22, a conserved N-terminal peptide of flagellin protein. These results indicate that GmAGB1 functions as a positive regulator in disease resistance and GmAGB1 is indispensable for the ROS production and GmMPK3 activation induced by pathogen infection. Yeast two hybrid assay showed that GmAGB1 interacted with GmAGG1, suggesting that an evolutionary conserved heterotrimeric G protein complex similarly functions in soybean.


Assuntos
Resistência à Doença , Inativação Gênica , Soja , Doenças das Plantas , Soja/genética , Soja/imunologia , Soja/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Comovirus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Regulação da Expressão Gênica de Plantas , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/imunologia , Xanthomonas , Espécies Reativas de Oxigênio/metabolismo
10.
Front Oncol ; 14: 1376916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525426

RESUMO

Lung cancer, ranking second globally in both incidence and high mortality among common malignant tumors, presents a significant challenge with frequent occurrences of drug resistance despite the continuous emergence of novel therapeutic agents. This exacerbates disease progression, tumor recurrence, and ultimately leads to poor prognosis. Beyond acquired resistance due to genetic mutations, mounting evidence suggests a critical role of epigenetic mechanisms in this process. Numerous studies have indicated abnormal expression of Histone Methyltransferases (HMTs) in lung cancer, with the abnormal activation of certain HMTs closely linked to drug resistance. HMTs mediate drug tolerance in lung cancer through pathways involving alterations in cellular metabolism, upregulation of cancer stem cell-related genes, promotion of epithelial-mesenchymal transition, and enhanced migratory capabilities. The use of HMT inhibitors also opens new avenues for lung cancer treatment, and targeting HMTs may contribute to reversing drug resistance. This comprehensive review delves into the pivotal roles and molecular mechanisms of HMTs in drug resistance in lung cancer, offering a fresh perspective on therapeutic strategies. By thoroughly examining treatment approaches, it provides new insights into understanding drug resistance in lung cancer, supporting personalized treatment, fostering drug development, and propelling lung cancer therapy into novel territories.

11.
Carbohydr Polym ; 333: 121970, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494224

RESUMO

Insect cuticles that are mainly made of chitin, chitosan and proteins provide insects with rigid, stretchable and robust skins to defend harsh external environment. The insect cuticle therefore provides inspiration for engineering biomaterials with outstanding mechanical properties but also sustainability and biocompatibility. We herein propose a design of high-performance and sustainable bioplastics via introducing CPAP3-A1, a major structural protein in insect cuticles, to specifically bind to chitosan. Simply mixing 10w/w% bioengineered CPAP3-A1 protein with chitosan enables the formation of plastics-like, sustainably sourced chitosan/CPAP3-A1 composites with significantly enhanced strength (∼90 MPa) and toughness (∼20 MJ m -3), outperforming previous chitosan-based composites and most synthetic petroleum-based plastics. Remarkably, these bioplastics exhibit a stretch-strengthening behavior similar to the training living muscles. Mechanistic investigation reveals that the introduction of CPAP3-A1 induce chitosan chains to assemble into a more coarsened fibrous network with increased crystallinity and reinforcement effect, but also enable energy dissipation via reversible chitosan-protein interactions. Further uniaxial stretch facilitates network re-orientation and increases chitosan crystallinity and mechanical anisotropy, thereby resulting in stretch-strengthening behavior. In general, this study provides an insect-cuticle inspired design of high-performance bioplastics that may serve as sustainable and bio-friendly materials for a wide range of engineering and biomedical application potentials.


Assuntos
Quitosana , Animais , Quitosana/metabolismo , Insetos , Quitina/química , Materiais Biocompatíveis
12.
Int J Surg ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498406

RESUMO

BACKGROUND: Surgical treatment of complex giant pituitary adenomas (GPAs) presents significant challenges. The efficacy and safety of combining transsphenoidal and transcranial approaches for these tumors remain controversial. In this largest cohort of patients with complex GPAs, we compared the surgical outcomes between those undergoing a combined regimen and a non-combined regimen. We also examined the differences in risks of complications, costs, and logistics between the two groups, which might offer valuable information for the appropriate management of these patients. MATERIALS AND METHODS: This was a multicenter retrospective cohort study conducted at 13 neurosurgical centers. Consecutive patients who received a combined or non-combined regimen for complex GPAs were enrolled. The primary outcome was gross total resection, while secondary outcomes included complications, surgical duration, and relapse. A propensity score-based weighting method was used to account for differences between the groups. RESULTS: Out of 647 patients (298 [46.1%] women, mean age: 48.5 ± 14.0 years) with complex GPAs, 91 were in the combined group and 556 were in the non-combined group. Compared with the non-combined regimen, the combined regimen was associated with a higher probability of gross total resection (50.5% vs. 40.6%, odds ratio [OR]: 2.18, 95% confidence interval [CI]: 1.30-3.63, P = 0.003). The proportion of patients with life-threatening complications was lower in the combined group than in the non-combined group (4.4% vs. 11.2%, OR: 0.25, 95% CI: 0.08-0.78, P = 0.017). No marked differences were found between the groups in terms of other surgical or endocrine-related complications. However, the combined regimen exhibited a longer average surgery duration of 1.3 h (P < 0.001) and higher surgical costs of 22,000 CNY (approximate 3,000 USD, P = 0.022) compared with the non-combined approach. CONCLUSIONS: The combined regimen offered increased rates of total resection and decreased incidence of life-threatening complications, which might be recommended as the first-line choice for these patients.

13.
Adv Mater ; : e2311562, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507724

RESUMO

A robust perovskite-buried interface is pivotal for achieving high-performance flexible indoor photovoltaics as it significantly influences charge transport and extraction efficiency. Herein, a molecular bridge strategy is introduced utilizing sodium 2-cyanoacetate (SZC) additive at the perovskite-buried interface to simultaneously achieve in situ passivation of interfacial defects and bottom-up crystallization modulation, resulting in high-performance flexible indoor photovoltaic applications. Supported by both theoretical calculations and experimental evidences, it illustrates how SZCs serve as molecular bridges, establishing robust bonds between SnO2 transport layer and perovskite, mitigating oxygen vacancy defects and under-coordinated Pb defects at interface during flexible fabrication. This, in turn, enhances interfacial energy level alignment and facilitates efficient carrier transport. Moreover, this in situ investigation of perovskite crystallization dynamics reveals bottom-up crystallization modulation, extending perovskite growth at the buried interface and influencing subsequent surface recrystallization. This results in larger crystalline grains and improved lattice strain of the perovskite during flexible fabrication. Finally, the optimized flexible solar cells achieve an impressive efficiency exceeding 41% at 1000 lux, with a fill factor as high as 84.32%. The concept of the molecular bridge represents a significant advancement in enhancing the performance of perovskite-based flexible indoor photovoltaics for the upcoming era of Internet of Things (IoT).

14.
Front Oncol ; 14: 1367200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529383

RESUMO

Background: Controversy surrounds the efficacy of adjuvant chemotherapy (ACT) in the treatment of stage I lung adenocarcinoma (LUAD). The objective of this study was to examine the impact of the maximum standardized uptake value (SUVmax) as measured by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) on the efficacy of ACT in patients diagnosed with stage I LUAD. Methods: We scrutinized the medical records of 928 consecutive patients who underwent complete surgical resection for pathological stage I LUAD at our institution. The ideal cut-off value for primary tumor SUVmax in terms of disease-free survival (DFS) and overall survival (OS) was determined using the X-tile software. The Kaplan-Meier method and Cox regression analysis were used for survival analysis. Results: Based on the SUVmax algorithm, the ideal cutoff values were determined to be 4.9 for DFS and 5.0 for OS. We selected 5.0 as the threshold because OS is the more widely accepted predictive endpoint. In a multivariate Cox regression analysis, SUVmax ≥ 5.0, problematic IB stage, and sublobectomy were identified as independent risk factors for poor DFS and OS. It is noteworthy that patients who were administered ACT had significantly longer DFS and OS than what was observed in the subgroup of patients with pathological stage IB LUAD and SUVmax ≥ 5.0 (p < 0.035 and p ≤ 0.046, respectively). However, there was no observed survival advantage for patients in stages IA or IB who had an SUVmax < 5.0. Conclusion: The preoperative SUVmax of tumors served as an indicator of the impact of ACT in the context of completely resected pathological stage I LUAD. Notably, patients within the Stage IB category exhibiting elevated SUVmax levels emerged as a subgroup experiencing substantial benefits from postoperative ACT.

15.
Br J Pharmacol ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532634

RESUMO

BACKGROUND AND PURPOSE: The interleukin (IL)-36 pathway is a critical player in the pathogenesis of pustular psoriasis. However, therapies targeting this pathway are limited or unaffordable (e.g. the anti-IL-36 receptor antibody). AMP-activated protein kinase (AMPK), a regulator of cellular energy and metabolism, is known to participate in inflammatory diseases. However, its role in IL-36-induced skin inflammation remains unclear. Therefore, we sought to investigate the role of AMPK signals in regulating IL-36-induced responses in the skin. EXPERIMENTAL APPROACH: IL-36-stimulated primary normal human epidermal keratinocytes (NHEKs) and IL-36-injected (intradermally) BALB/c mice served as the cell and animal models, respectively. Additionally, 5-aminoimidazole-4-carboxamide riboside (AICAR) and A769662 served as AMPK activators. KEY RESULTS: AICAR and A769662 significantly suppressed the IL-36-induced IL-8 (CXCL8) and CCL20 production from NHEKs. IL-36-induced IκBζ protein expression was prominently reduced and IKK/IκBα phosphorylation was attenuated by AICAR and A769662. Conversely, AMPKα knockdown increased IκBζ protein expression and IKK/IκBα phosphorylation in IL-36-treated NHEKs. Furthermore, AICAR and A769662 enhanced IL-36-induced-IκBζ protein degradation via the proteasome-dependent but not the lysosome-dependent pathway. Pretreatment of NHEKs with IL-36 slightly suppressed the AICAR- and A769662-triggered phosphorylation of AMPK and acetyl-CoA carboxylase. In the mouse model, topical application of AICAR significantly reduced ear swelling, redness, epidermal thickening, neutrophil infiltration and inflammatory and antimicrobial peptide gene expression. CONCLUSION AND IMPLICATIONS: AMPK activation suppresses IL-36-induced IL-8 and CCL20 release by regulating IκBζ expression in keratinocytes and reduces IL-36-induced skin inflammation in mice, suggesting that AMPK activation is a potential strategy for treating patients with IL-36-mediated inflammatory skin disorders.

16.
Carbohydr Polym ; 334: 122044, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553240

RESUMO

Chitosan, known for its appealing biological properties in packaging and biomedical applications, faces challenges in achieving a well-organized crystalline structure for mechanical excellence under mild conditions. Herein, we propose a facile and mild bioengineering approach to induce organized assembly of amorphous chitosan into mechanically strong bio-composite via incorporating a genetically engineered insect structural protein, the cuticular protein hypothetical-1 from the Ostrinia furnacalis (OfCPH-1). OfCPH-1 exhibits high binding affinity to chitosan via hydrogen-bonding interactions. Simply mixing a small proportion (0.5 w/w%) of bioengineered OfCPH-1 protein with acidic chitosan precursor induces the amorphous chitosan chains to form fibrous networks with hydrated chitosan crystals, accompanied with a solution-to-gel transition. We deduce that the water shell destruction driven by strong protein-chitosan interactions, triggers the formation of well-organized crystalline chitosan, which therefore offers the chitosan with significantly enhanced swelling resistance, and strength and modulus that outperforms that of most reported chitosan-based materials as well as petroleum-based plastics. Moreover, the composite exhibits a stretch-strengthening behavior similar to the training living muscles on cyclic load. Our work provides a route for harnessing the OfCPH-1-chitosan interaction in order to form a high-performance, sustainably sourced bio-composite.


Assuntos
Quitosana , Animais , Quitosana/química , Água , Ligação de Hidrogênio , Insetos
17.
Int Immunopharmacol ; 131: 111835, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508097

RESUMO

Ischemia-reperfusion injury (IRI) - a complex pathological condition occurring when blood supply is abruptly restored to ischemic tissues, leading to further tissue damage - poses a significant clinical challenge. Sphingosine-1-phosphate receptors (S1PRs), a specialized set of G-protein-coupled receptors comprising five subtypes (S1PR1 to S1PR5), are prominently present in various cell membranes, including those of lymphocytes, cardiac myocytes, and endothelial cells. Increasing evidence highlights the potential of targeting S1PRs for IRI therapeutic intervention. Notably, preconditioning and postconditioning strategies involving S1PR agonists like FTY720 have demonstrated efficacy in mitigating IRI. As the synthesis of a diverse array of S1PR agonists continues, with FTY720 being a prime example, the body of experimental evidence advocating for their role in IRI treatment is expanding. Despite this progress, comprehensive reviews delineating the therapeutic landscape of S1PR agonists in IRI remain limited. This review aspires to meticulously elucidate the protective roles and mechanisms of S1PR agonists in preventing and managing IRI affecting various organs, including the heart, kidney, liver, lungs, intestines, and brain, to foster novel pharmacological approaches in clinical settings.


Assuntos
Cloridrato de Fingolimode , Traumatismo por Reperfusão , Humanos , Células Endoteliais/metabolismo , Fosfatos , Rim/patologia , Receptores de Esfingosina-1-Fosfato , Traumatismo por Reperfusão/metabolismo
18.
Medicine (Baltimore) ; 103(11): e37330, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489717

RESUMO

The cancer-specific mortality (CSM) of patients with human epidermal growth factor receptor 2 positive (HER2+) breast cancer remains dismal and varies widely from person to person. Therefore, we aim to construct a nomogram to predict CSM in HER2+ breast cancer using data from the surveillance, epidemiology, and end results (SEER) database. The clinicopathological data of patients diagnosed with HER2+ breast cancer from 2000 to 2019 were selected from the SEER database. Independent prognostic factors for CSM of patients were identified by competing risk model. Subsequently, we constructed a new predicting nomogram. Calibration curves, receiver operating characteristic curve, and decision curve were used to evaluate the efficiency of the nomogram. A total of 45,362 breast cancer patients in the SEER database were selected for study and randomly separated into training (n = 31,753) and validation (n = 13,609) cohorts. Univariate and multivariate analysis showed that age, race, tumor grade, clinical stage, T stage, surgery status, radiotherapy, chemotherapy, and regional nodes examined were independent risk factors for CSM of HER2+ breast cancer patients. Receiver operating characteristic curves for the prediction nomogram of the CSM for breast cancer patients indicated that the 1-, 3- and 5-year AUCs were 0.874, 0.843, and 0.820 in the training cohort and 0.861, 0.845, and 0.825 in the validation cohort, respectively. The c-index was 0.817 and 0.821 in training cohort and validation cohort, respectively. Moreover, a good agreement was seen between the observed outcome and the predicted probabilities in the calibration curves of the nomogram in training cohort and validation cohort. Further decision curve analysis demonstrated good clinical utilities of the nomogram in training cohort and validation cohort. The nomogram shows good accuracy and reliability in predicting the CSM of breast cancer patients, and it could provide some theoretical support for clinicians to make decisions.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/terapia , Nomogramas , Reprodutibilidade dos Testes , Área Sob a Curva , Calibragem
19.
Artigo em Inglês | MEDLINE | ID: mdl-38440939

RESUMO

Ciprofol (HSK3486) is a newly developed, highly selective γ-aminobutyric acid-A (GABAA ) receptor potentiator that is recently approved for a new indication of sedation for patients in the intensive care unit (ICU) in China. This analysis aimed to characterize the population pharmacokinetics (PopPKs) of ciprofol and evaluate the relationship of exposure with hypotension in mechanically ventilated patients in the ICU. A total of 462 subjects with 3918 concentration measurements from two clinical trials of mechanically ventilated patients in the ICU, four clinical trials of elective surgical patients, and six clinical trials of healthy subjects were used in the PopPK analysis. Exposure-safety relationship for hypotension was evaluated based on the data gathered from 112 subjects in two clinical trials of mechanically ventilated patients in the ICU. Ciprofol pharmacokinetics (PKs) was adequately described by a three-compartment linear disposition model with first-order elimination. Body weight, age, sex, blood sampling site (vein vs. arterial), study design (long-term infusion vs. short-term infusion), and patient population (ICU vs. non-ICU) were identified as statistically significant covariates on the PKs of ciprofol. Within the exposure range of the mechanically ventilated ICU patient population, no meaningful association was observed between ciprofol exposure and the incidence of hypotension. These results support the dosing regimen currently used in mechanically ventilated patients in the ICU.

20.
Int Wound J ; 21(3): e14831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484730

RESUMO

Neoadjuvant chemoimmunotherapy is becoming an increasingly important part of the management of lung cancer to facilitate surgical resection. This study aimed to summarize the treatment-related adverse events (TRAEs) and wound complications of neoadjuvant chemoimmunotherapy in non-small cell lung cancer (NSCLC). Eligible studies of neoadjuvant chemoimmunotherapy for NSCLC were identified from PubMed, Embase and Web of Science. The endpoints mainly included TRAEs and wound complications. Stata18 software was used for statistical analysis with p < 0.05 considered statistically significant. Twenty studies including a total of 1072 patients were eligible for this study. Among the patients who received neoadjuvant chemoimmunotherapy, the pooled prevalence of any grade TRAEs was 77% (95% confidence interval [CI] [0.64-0.86]), grade 1-2 TRAEs was 77% (95% CI [0.58-0.89]) and grade ≥3 TRAEs was 26% (95% CI [0.16-0.38]). Surgery-related complications rate was 22% (95% CI [0.14-0.33]). Among the wound complications, the pooled rate of air leakage was 10% (95% CI [0.04-0.23]), pulmonary/wound infection was 8% (95% CI [0.05-0.13]), bronchopleural fistula was 8% (95% CI [0.02-0.27]), bronchopulmonary haemorrhage was 3% (95% CI [0.01-0.05]), pneumonia was 5% (95% CI [0.02-0.10]), pulmonary embolism was 1% (95% CI [0.01-0.03]), pleural effusion was 7% (95% CI [0.03-0.14]) and chylothorax was 4% (95% CI [0.02-0.09]). Overall, neoadjuvant chemoimmunotherapy in NSCLC results a high incidence of grade 1-2 TRAEs but a low risk of increasing the incidence of ≥3 grade TRAEs and wound complications. These results need to be confirmed by more large-scale prospective randomized controlled trials and studies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Terapia Neoadjuvante/efeitos adversos , Estudos Prospectivos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/cirurgia , Imunoterapia/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...